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Figure 1: Hierarchy in task-solving skills of street sign con-
cept. Only after learning lower-level task-solving skills mod-
els can effectively learn higher-level ones.

1 Introduction

Recent studies in curriculum learning for Large
Language Models (LLMs) (Chen et al., 2023; Al-
balak et al., 2023; Lee et al., 2024a) emphasize the
importance of data ordering for effective training.
However, curriculum learning for Large Vision-
Language Models (LVLMs) remains unexplored.
In this research, we propose leveraging vison-
language (VL) concept-skill compositions identi-
fied by our recent work, COINCIDE (Lee et al.,
2024b), for curriculum learning in visual instruc-
tion tuning (VIT).

Our key intuition is that LVLM abilities exist in
a hierarchical structure. For the LVLM to effec-
tively learn from VIT datasets, the model should
undergo progressive training. For example, as illus-
trated in Figure 1, we assume that the model could
effectively learn skills by following a sequential or-
der that begins with fundamental skills like object
recognition, advances to understanding object at-
tributes and relationships, and then learns complex
skills such as visual reasoning.

In our approach, we combine the concept-skill
compositions and a popular reinforcement learning
approach to enable LVLMs to automatically find
their optimal skill learning orders for efficient and
effective visual instruction tuning.
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Figure 2: VL tasks (e.g., VQAv2 and GQA, LLaVA-Conv
and LLaVA-Reason) share VL concept-skill compositions.

2 Method

2.1 COINCIDE

COINCIDE uses internal neural network activa-
tions from a small model for clustering to identify
VL concepts and skills in VIT data. A concept
could be street signs or trains, while a skill could
be OCR, recognizing color, or reasoning.

Upon close inspection, we find that different
VL tasks contain overlap over these concept-skill
compositions. As exemplified in Figure 2, LLaVA-
Conv and LLaVA-Reason contain questions about
the risks of snowboard jumps, despite their sepa-
rate focuses on multi-turn conversations and rea-
soning. This highlights the potential benefits of
defining model skills based on shared concept clus-
ters, offering more granular and effective skill dis-
tinctions compared to traditional task-based skill
definition (e.g. GQA, VQAv2, OCRVQA) (Chen
et al., 2023).
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Algorithm 1 Curriculum Learning with Exp3 Algorithm

Require: K: the number of clusters, γ: exploration rate, µ: moving average rate, T : the number of rounds S: the number of
steps per round, D = {D1, . . . ,DK}: Dataset for K clusters, fθ: training model

Initialization: Ri = 0, Li,past = 0 i∈{1, 2, . . . ,K}
1: for t = 1, 2, . . . , T do
2: pi(t)=(1− γ) Ri∑K

j=1
+ γ

K
, i∈{1, 2, . . . ,K} ▷ Calculate cluster selection distribution at step t

3: for s = 1, 2, . . . , S do
4: Di ∼ p(t) ▷ Select cluster i from the step t distribution
5: B ∼ Di ▷ Sample batch from cluster i
6: Ri ← (1− µ)Ri + µ(Li,past − L(fθ, B)) ▷ Update reward of cluster i
7: Li,past = L(fθ, B) ▷ Update past loss value of cluster i
8: θ ← θ − η∇θL(fθ, B) ▷ Update model parameters
9: end for

10: end for

2.2 Skill order discovery with Exp3

We aim to design an effective curriculum learning
algorithm that automatically determines the opti-
mal training sequence using Exp3 algorithm (Alle-
siardo et al., 2017) and clusters derived from COIN-
CIDE, which captures VL concept-skill composi-
tions. Our approach begins by clustering VIT data
into these concept-skill compositions using the CO-
INCIDE method. In this context, each cluster is
treated as a multi-armed bandit, where a training
loss difference of a cluster is used as a reward for
the Exp3 algorithm. An overview of our curriculum
learning strategy is illustrated in Figure 3.

At each training step, one of the clusters is se-
lected based on a cluster selection probability distri-
bution p(t) derived from reward signals associated
with previous selections. Then, a sample batch is
drawn from the chosen cluster and used to train the
target model. The model subsequently receives a
reward signal indicating whether the selected clus-
ter contributed positively to the training progress,
refining future cluster selections.

When a cluster shows a large training loss re-
duction, it indicates that the LVLM is effectively
learning the skill associated with that cluster at the
current stage. Consequently, the model should sam-
ple more data from this cluster to further improve
training efficacy. On the other hand, if a cluster
shows little to no change in training loss, it sug-
gests that the model has either already mastered
the relevant skill or is not yet in a suitable state
to learn it. In such cases, the model may benefit
from focusing on other clusters to ensure a more
effective learning process. Detailed steps of this
procedure can be found in Algorithm 1.
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Figure 3: Overview of the proposed curriculum learning
pipeline. For each concept-skill composition, we track past
training loss value (Lpast) to measure its previous perfor-
mance. After training an LVLM using a current batch of data,
which is selected based on a probability distribution (p(t)),
we calculate a reward (R). This reward is based on the change
in the loss value, indicating whether the selected data batch
improved the model’s performance. Through the reward, we
update p(t) and repeat the above process to train the model.

3 Experiments

3.1 Setup
Visual Instruction Tuning Dataset We conduct
coreset selection on LLaVA-1.5 (Liu et al., 2023a)
VIT dataset. The LLaVA-1.5 dataset contains 665k
VIT data from 12 different VL tasks.

Models For the target LVLMs, we use the pre-
trained LLaVA-1.5 model (Liu et al., 2023a) with
a default size of 7B parameters. In all experiments,
we train the models using LoRA (Hu et al., 2022)
for one epoch, following the official finetuning hy-
perparameters specified in LLaVA-1.5. As a ref-
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Table 1: We perform a comparison with the curriculum learning baseline on various multimodal evaluation benchmarks. We
finetune LVLMs with LLaVA-1.5 (Liu et al., 2023a) dataset utilizing 20% of the total steps for training. The best and the second
best results are in bold and underlined, respectively.

Method VQAv2 GQA VizWiz SQA-I TextVQA POPE MME MMBench LLaVA- Rel. (%)
en cn Bench

Full-Finetune 79.1 63.0 47.8 68.4 58.2 86.4 1476.9 66.1 58.9 67.9 100

Random 75.7 58.9 44.3 68.5 55.3 84.7 1483.0 62.2 54.8 65.0 95.8
Skill-it (Chen et al., 2023) 75.4 56.9 42.4 69.7 56.0 84.9 1370.5 62.9 55.2 68.2 95.3
COINCIDE+ (Ours) 75.8 56.9 49.3 69.9 53.9 86.0 1470.0 64.0 56.4 67.6 97.5

erence model, we use the TinyLLaVA-2B (Zhou
et al., 2024), a small VLM finetuned on the target
VIT dataset, for efficient internal activation extrac-
tion and clustering. All experiments are conducted
using 4 V100 GPUs.

Evaluation Benchmark To assess the gener-
alization of finetuned LVLMs across diverse vi-
sual instructions, we evaluate the models on sev-
eral widely adopted zero-shot multimodal eval-
uation benchmarks, including 1) visual ques-
tion answering: VQAv2 (Goyal et al., 2017),
GQA (Hudson and Manning, 2019), VizWiz (Gu-
rari et al., 2018); 2) knowledge-grounded QA:
ScienceQA (Lu et al., 2022); 3) Optical Charac-
ter Recognition (OCR): TextVQA (Singh et al.,
2019); 4) hallucination: POPE (Li et al., 2023);
5) multiple-choice: MME (Fu et al., 2023), MM-
Bench (Liu et al., 2023c); 6) free-form generation:
LLaVA-Bench (Liu et al., 2023b).

Since each evaluation benchmark has a different
scale, we compute average relative performance,
denoted as Rel., across benchmarks to assess the
level of generalization. Each relative performance
is derived from the formula: (model performance /
full-finetuned performance) × 100%.

Baselines COINCIDE+ incorporates the Exp3
algorithm and VL concept-skill compositions of the
COINCIDE. For comparison, we employ the Skill-
it (Chen et al., 2023), a recent curriculum learning
algorithm that uses task labels and evaluation loss
of each task to estimate the training model’s state.
We additionally report the results of Random, the
model finetuned with random sampling strategy,
and Full-Finetune, the model finetuned with the
full VIT dataset.

3.2 Results and Discussion

We conduct curriculum learning experiments on
the LLaVA-1.5 dataset, utilizing 20% of the total
training steps. The performance of the finetuned
models is summarized in Table 1. Our results show

Figure 4: Visualization of task ratio for each round (t). Each
task ratio is calculated as the sum of the cluster selection
distribution of task-related clusters.

that COINCIDE+ outperforms Skill-it by a notable
2.2 percentage points (pp) in average relative per-
formance. Additionally, COINCIDE+ performs
competitively compared to the Full-Fintune base-
line, outperforming the baseline in VizWiz and
SQA-I evaluation benchmarks, despite training on
only 20% of the dataset.

Interestingly, Skill-it underperforms even the
Random baseline, suggesting that defining skills
based solely on task names is ineffective. In con-
trast, COINCIDE+ achieves its improvement with-
out relying on predefined evaluation datasets or task
labels. Instead, it autonomously constructs fine-
grained clusters and enables the model to dynam-
ically select optimal data clusters during training.
This approach proves both effective and applicable
to real-world scenarios.

However, we observe a significant performance
drop in COINCIDE+ when evaluated on the
TextVQA evaluation benchmark. To investigate
this, we analyze the cluster selection distribution
by aggregating all the distribution values related to
each task. The results, visualized in Figure 4, show
that OCR-VQA-related clusters (colored green
in Figure 4) are assigned a low priority in the later
training rounds. Hence, we analyze that the model
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learned OCR skills in the middle of training, and
thus the importance of these clusters would dimin-
ish over time. Consequently, the model suffers
from catastrophic forgetting of the OCR abilities
as it is trained on other data, yet the reward mecha-
nism failed to capture this loss in OCR ability.

4 Future Direction

To improve our approach, we plan to extend the
Exp3 algorithm to address the catastrophic for-
getting of LVLM skills. Drawing from contin-
ual learning techniques, we aim to integrate a re-
hearsal memory mechanism that stores data for
each concept-skill composition. When the model
shows signs of forgetting a specific concept-skill,
the stored data will be revisited during training
to reinforce the model’s retention of necessary
concept-skill compositions.

One of the potential reasons of the low selection
ratio of some tasks is their inherent lack of samples.
We can experiment on a much larger visual instruc-
tion tuning dataset, such as Cambrian-7M (Tong
et al., 2024).
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A Visualizing LVLM Skills with
Relevancy Maps

In our method, we extract neuron activations from
various layers to represent the concepts and skills
of each VIT data. In this approach, we hypothe-
size that distinct layers represent distinct concepts
and skills of the LVLM. To support this assump-
tion, we compute relevancy maps (Chefer et al.,
2021) following the approach outlined in Stan et al.
(2024). The relevancy maps help us understand
the model’s final output by highlighting the most
contributing parts of the input for each layer. Given
the target output token yt and the attention map
Al∈Rh×(Nv+Nl)×(Nv+Nl) of the l-th layer, where
h is the head dimension of the attention, the rele-
vancy map R is computed as follows:

Āl = Eh[∇Al ⊙Al], ∇Al =
∂yt

∂Al
,

R = R+ Āl ·R, for l ∈ {1, 2, . . . , L},
(1)

where ⊙ denotes the Hadamard product and L is
the total number of layers in the LVLM. In order
to investigate the contribution of each layer to the
final output, we visualize the image regions related
to the output token through the visual relevancy
map computed from each layer. Specifically, we
consider the row of Āl · R corresponding to the
output token. Then, we extract the visual token
parts of the row to yield the visual relevancy map.

For the investigation, we inspect the 4th, 8th,
12th, 16th, and 20th layers of the TinyLLaVA-
2B (Zhou et al., 2024) model and identify the layer
that activates the most relevant visual regions. The
results, shown in Figure 5, reveal that (1) the most
relevant layer varies according to the concept-skill
composition and (2) the most relevant layer is the
same across diverse VIT data when the data shares
a similar concept-skill composition. These findings
support our initial assumption that different layers
contribute to distinct concepts and skills. There-
fore, using neuron activations from diverse layers
can effectively group VIT data according to their
concept-skill composition.

B Concept-Skill Clustering Visualization

We visualize the clustering results of the gathered
VIT data. The results are illustrated in Figure 6.
We observe that most clusters contain VIT data that
encode similar concept-skill compositions. For in-
stance, the first group in Figure 6 consists of sam-
ples requiring OCR and counting abilities to solve

visual queries involving images with store signs.
The second group features images of people wait-
ing for public transportation and multiple-choice
questions that require visual recognition and rea-
soning abilities. The third group shows a cluster of
samples with images of people in suits and queries
focusing on object localization and generating cap-
tions for given bounding boxes. Lastly, the bottom
group includes images exhibiting children with an-
imals and requiring the ability to reason about the
educational benefits that the children might gain
from interacting with the animals.
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Bike near the road & Reasoning – Layer 8
Q: Why is the man on the road wearing a whistle? 
A. crossing guard B. no sidewalk C. street performer D. jaywalking A: A

Q: Why is he riding on the sidewalk? 
A. he's tired B. too slow C. more fun D. he's walking A: B

Q: Why are the men in uniforms standing by the road?
A. doctors B. security C. street workers D. entertainment A: B

Q: Why are all the vehicles on the left not moving? 
A. tired B. red light C. parade D. accident A: D

Tower clock & OCR – Layer 12
Q: What time is it? A: 7:40

Q: What time is it on the clock? A: 11:10

Q: What time is it? A: 2:50

Q: What time is it here? A: 12:15

Objects in bathroom & Position attribute – Layer 12
Q: Is the towel on the left side? A: NoQ: Is the hose on the right side of the photo? A: Yes

Q: Which side is the white napkin on? A: Left Q: On which side is the white toilet? A: Right

Street sign & Common-sense Knowledge – Layer 16, 20

Q: What does the yellow street sign mean? A: Pedestrian cross

Q: What does the street sign mean to drivers? A: Do not enterQ: What are these green signs typically used for? A: Street name

Q: What was that sign meant for? A: Direct

Figure 5: Relevancy maps visualization. We investigate which layer contributes most to the final output of the LVLM. This
is done by visualizing relevancy maps of four samples from the same cluster. For each example, the left image is the original,
while the right image shows the visualized relevancy map, highlighting regions most relevant to the LVLM output text colored
in yellow. The top-left corner of each group explains the VL concept-skill composition and the layer number with the highest
relevancy to the output.
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Q1: What is this place called?
A1: Maxwell street depot
Q2: What number is next to OPEN?
A2: 24
Q3: How many people are in the photo?
A3: 1
Q4: How late is the sandwich shop open?
A4: 24 hours

Q1: Is it sunny?
A1: Yes
Q2: How many people do you see?
A2: 15
Q3: What is the restaurant in the 
background of this photo?
A3: Bar veloce.
Q4: Is there any signal in the picture?
A4: Yes

Q1: How many bikes?
A1: 1
Q2: What color is the road paint?
A2: White
Q3: What does the bus say?
A3: Be purposeful
Q4: What is the name of tattoo parlor?
A4: Flash taco

Q1: What do the written signs say?
A1: El rapido
Q2: Where is the cafeteria sign?
A2: Hanging
Q3: How many signs are shown?
A3: 6
Q4: Are there more than 3 signs?
A4: Yes

Store sign & OCR + Counting 

Q: What is the man by the bags awaiting?
A. skateboarder
B. train
C. delivery
D. cab
Answer with the option’s letter from the 
given choices directly.

A: D

Q: What is the women in yellow waiting for?
A. rain
B. ride
C. check
D. her pet
Answer with the option’s letter from the 
given choices directly.

A: B

Q: What are the people waiting to do?
A. ride train
B. dance
C. eat
D. work
Answer with the option’s letter from the 
given choices directly.

A: A

Q: What do the people do when the fast 
moving thing stops?
A. exercise
B. cook
C. swim
D. board it
Answer with the option’s letter from the 
given choices directly.

A: D

Waiting for public transportation & Scene understanding 

Q1: Please provide a short description for 
this region: [0.84, 0.25, 1.0, 0.83].
A1: Female brown hair black dress facing 
away.
Q2: Please provide the bounding box 
coordinate of the region this sentence 
describes: far right person half.
A2: [0.84, 0.25, 1.0, 0.83]
…

Q1: Please provide the bounding box 
coordinate of the region this sentence 
describes: blond hair.
A1: [0.02, 0.22, 0.3, 0.8]
Q2: Please provide the bounding box 
coordinate of the region this sentence 
describes: man with blue tie.
A2: [0.28, 0.32, 0.6, 0.8]
…

Q1: Please provide a short description for 
this region: [0.0, 0.17, 0.55, 0.82].
A1: Light blue shirt.
Q2: Please provide the bounding box 
coordinate of the region this sentence 
describes: a boy in a blue and white top 
and tie is looking at the boy in blue 
talking.
A2: [0.69, 0.18, 0.98, 0.77]
…

Q1: Please provide the bounding box 
coordinate of the region this sentence 
describes: lleft guy.
A1: [0.1, 0.25, 0.58, 0.82]
Q2: Please provide the bounding box 
coordinate of the region this sentence 
describes: left man.
A2: [0.1, 0.25, 0.58, 0.82]
…

People dressed in the suit & Object localization + Captioning 

Q: What is a possible educational benefit 
for the children in this situation?
A: An educational benefit for the children 
interacting with the sheep is that they are 
learning and understanding more about 
farm animals, their behaviors, and the 
way they are cared for. This hands-on 
experience allows the children to foster a
…

Q: What educational purpose might this 
gathering serve?
A: This gathering, where people are 
observing the process of milking a cow 
while some are being shown how to do it, 
likely serves the purpose of educating 
everyone present about the traditional 
method of obtaining milk. It can be 
particularly informative for the toddler and
…

Q: What potential benefits can this 
interaction provide for the child?
A: The interaction of the young child 
petting the cow with the assistance of a 
father provides several potential benefits. 
It can help the child develop empathy, 
compassion, and a connection with 
animals by interacting with them in a
…

Q: What kind of experience are the two 
people having, and what can this teach 
them?
A: The two people, a woman and a young 
girl, are having an intimate and 
interactive experience with the cows in a 
pen, where they are petting and loving on 
the animals. This experience can teach 
them about the importance of connecting 
…

Child with animals & Reasoning 

Figure 6: Examples of data clusters. We visualize four samples from the same cluster. The top-left corner of each group
explains the VL concept-skill composition.
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